

Prajna: Cloud Service and Interactive Big Data Analytics

(Distributed Platform Building Leverage Functional Programming)

 Jin Li, Sanjeev Mehrotra and Weirong Zhu

Microsoft
One Microsoft Way, Bld. 99, Redmond, WA, USA

{jinl;sanjeevm,wezhu}@microsoft.com

Abstract

Apache Spark has attracted broad attention in both academia

and industry. When people talk about Spark, the first thing

that comes to mind is the Resilient Distributed Datasets

(RDDs), which lets programmers perform in-memory com-

putations on large clusters in a fault-tolerant manner. While

RDD is certainly a great contribution, an overlooked aspect

of Spark lies in its harness of functional programming con-

cept (closure, lazy computation, and delegate) in distributed

system building. We believe that this is what makes Spark

flexible to support different data processing scenario under

one common platform and to execute the distributed opera-

tion efficiently. We also believe that Spark has just scratched

the surface, and the broader use of functional computing

concept can fundamentally change how distributed system is

built.

In this paper, we describe Prajna, a distributed functional

programming platform. Prajna is built on top of .Net and F#,

and is open source released [31] (Apache license v2.0, note

that all components that Prajna depends upon, including both

.Net and F# have also been open sourced). Prajna not only

supports (and extends) in-memory data analytics on large

clusters like that of Spark, but also supports development

and deployment of cloud services. Moreover, we show that

Prajna can harmonize cloud service and data analytical ser-

vice, and add rich data analytics on any existing cloud ser-

vice/application. Prajna supports running of cloud service

and interactive data analytics in both managed code and un-

managed code, and supports running of remote code with

significant data components (e.g., a recognition model that

is hundreds of megabytes in size). And with little program-

ming effort (a day’s work), Prajna allows a programmer to

add interactive data analytics to existing cloud services and

applications with an analytical turnaround time under a sec-

ond. The analyzed data (e.g., statuses of the cloud service,

users’ inputs, etc.) is processed entirely in-memory during

the analytical cycles and never stored to disk. Also, data is

first locally accumulated and aggregated before further send-

ing across the network for further cluster-wide aggregation.

As such, through Prajna, cloud wide telemetry data becomes

available right at users’ fingertip.

Categories and Subject Descriptors C.2.4 [Distributed

Systems]: Distributed applications; D.1.3 [Concurrent

Programming]: Distributed programming; D.4.7 [Organi-

zation and Design]: Distributed systems, interactive sys-

tems; D.3.2 [Language Classifications]: Functional lan-

guages; data-flow languages.

Keywords Prajna, cloud service, interactive data analytics,

distributed functional programming.

1. Introduction

Developed at Berkely’s AMPLab, Spark [1] is a powerful

data processing engine designed to handle both batch and

streaming workloads in record time. On top of Spark, a num-

ber of additional modules have been built, such as Spark

Stream, BlinkDB [4], GraphX [2], MLBase/MLib [3]. Exist-

ing work has shown that Spark can work with a variety of

storage systems, such as Amazon S3, HDFS, and other

POSIX-compliant file system, and can execute cluster com-

puting tasks very efficiently, as demonstrated by its entry of

the Gray Sort 100TB benchmark [5].

When discussing Spark, most people have focused on the

Resilient Distributed Datasets (RDDs). While RDD is in-

deed a great contributions that enables fast distributed in-

memory data processing, we feel that an overlooked aspect

of Spark is its use of functional programming concept in dis-

tributed system building. While Spark has used functional

programming concept such as data flow programming, lazy

computation, there are other functional programming as-

pects, such as the general capability to execute a remote clo-

sure, remote delegate, that may also be very useful in distrib-

uted system building.

In this paper, we will discuss Prajna, a distributed pro-

gramming platform. Prajna can be considered as a software

development kit (SDK) above .Net, that makes it easier for

the developer to program distributedly, be it writing cloud

service to be deployed in a public cloud or a private cluster,

or writing data analytical program. Prajna achieves this by

leveraging the following three functional programming con-

cepts for distributed system building.

First, Prajna enables efficient native remote execution of

generic closures. In functional term, a closure is a data struc-

ture storing a functional pointer together with its execution

environment and all free variables needed for the function.

The contribution of Prajna is to push the boundaries of what

can be included in the closures, and allow the programmer

to execute any code remotely, in an environment exactly re-

quired by the code execution. Prajna accomplishes this by

setting up a remote execution container, which contains the

code (e.g., assemblies, DLLs, and EXEs), data, customized

serializer/deserializer, execution credential, environmental

variable, and remote directory that the closure expects to be

executed upon. Another contribution of Prajna is to setup the

container once, and repeatedly use the container as much as

possible to execute remote closures. We have realized that

most of the overhead of the remote execution lies in the setup

of container, the launch of the container process and dynam-

ically loading the assemblies/DLLs. Once these are done, ex-

ecution of additional closures involves only operations to se-

rialize a function pointer plus the additional data structure

required for remote execution. After the closure is deserial-

ized, each remote execution becomes a native functional

call, and involves no additional interpretation.

Second, Prajna uses remote closures to launch cloud ser-

vices, and allow services to import and export a contract via

remote delegate. Armed with the capability to execute ge-

neric remote closures, launching a remote service in Prajna

becomes the simple remote execution of a delegate

FUNC<RemoteInstance>1 with a start parameter, where a

class derived from RemoteInstance manages the life cycle

of the services. Prajna services are typically long running,

and export contracts in the form of a remote delegate. In

functional programming term, a delegate is a type that de-

fines a method with strong type signature. Prajna contracts

are defined as remote delegate, which appears in the form of

a delegate, but can be executed locally or remotely, in one or

multiple nodes. The remote delegate of contract differs from

the remote closure in that no code is passed between the con-

tract provider and the contract consumer. The code executed

1 Func<TResult> is a .Net notation of a delegate that has no parameters,
and returns a value of type TResult. [6]

is always those of the contract provider. Prajna services, pro-

grams, and data analytical program can all import contracts

as corresponding delegates and consume the remote func-

tion. Prajna supports task programming model, and the re-

mote contract can be imported as Func<Task<TResult>> or

Func<T, Task<TResult>>. The use of delegate wrapping to

consume remote services greatly simplifies the program-

ming between server and clients by hiding most of the im-

plementation from the programmer. Comparing with other

remoting protocols, Prajna contract has the following three

contributions. 1) If the contract provider and consumer is in

the same container, the execution of contract became a direct

local function call, with no overhead. With this property,

Prajna encourages building distributed system through com-

ponentization, by building many mini-services, as consum-

ing contracts across services can be of zero overhead. 2)

Prajna contract can be directed towards a cluster of nodes, in

which one or more providers can be involved to complete

the contract. This expands the remoting protocol from a

peer-to-peer concept to a cluster concept, and enables a more

broad categories of services [e.g., load balanced query ser-

vice, Paxos service] being built on top of contract. 3) Prajna

contracts can export data sequence, which can then be im-

ported by Prajna analytical flow for analysis (see Section

3.5), and enables interactive data analytics of service telem-

etry.

Third, Prajna uses data flow programming concept to ex-

pose a language-integrated data analytical programming API

that is similar to Spark [1]. However, while RDDs are started

by transformations of data in a stable storage, Prajna’s dis-

tributed data abstraction, DSet (Distributed data Sets), can be

created by running one or more closures across each ma-

chine or imported from services running on the remote ma-

chines. The resulting dataset then span into a logical collec-

tion of dataset on cluster that can be further analyzed through

coarse grain transformations (e.g., map, filter, collect,

choose, mapreduce, sort, join) and aggregation actions

(e.g., toSeq, fold, iter). DSet expands upon RDD in term

of what distributed data set can be analyzed. For example, it

can include: all active file storage statuses in a cluster (for

distributed storage management), machine performance

counter (for performance monitoring), and execution logs

(for diagnosis and debugging). DSet can also be created by

importing from contracts of the remote services in the form

of Func<IEnumerable<’TResult>>. This enables Prajna to

interactive analyze service telemetry without the service

ever needing to persist the data. Furthermore, if the corre-

sponding Prajna service stores the internal service data in a

lock free data structure, such as those provided by sys-

tem.collections.concurrent namespace, the data gather-

ing thread can be executed independent of the threads that

run the services, which do not need to slow down or even be

aware that a concurrent data gathering thread is running.

The rest of the paper is organized as follows. The Prajna

remote execution environment, including the daemon and

the container is discussed in Section 2. We examine the ser-

vices and the contracts in Section 3. The Prajna data analyt-

ical capability is covered in Section 4. We discuss distributed

implementation and performance issues in Section 5. Exper-

imental results are shown in Section 6.

2. Prajna Daemon, Remote Execution Container

and Native Remote Execution

We discuss in this section how Prajna setups the remote ex-

ecution environment, and natively executes generic closures

remotely.

2.1 Cluster, remote execution environment and daemon.

Prajna is designed to run in the cloud, either in a public

cloud, e.g. Amazon AWS, Microsoft Azure, or in a private

cluster, e.g., a group of servers in a private data center. We

use the term cluster to describe a group of machines. Most

of clusters have similar characteristics, e.g., all nodes poten-

tially locate at the same geographic regions, with similar

physical machine and network properties. Nevertheless,

Prajna supports multi-cluster services and cross cluster data

analytics. And more than one cluster can be aggregated to

form a combined cluster. The characteristics of the machines

in the combined cluster may not be uniform, and there can

be significant deviation in term of CPU and network perfor-

mances.

The remote execution environment of Prajna is shown in

Fig. 1. At each of the node that runs Prajna services and/or

data analytical programs, a daemon is deployed. The respon-

sibility of the daemon is to accommodate requests to launch

services and/or data analytical jobs from clients, with the

core functionality being properly setting up a remote execu-

tion container. To keep the daemon stable, it doesn’t execute

any customized code by itself.

2.2 Remote execution roster.

All remote closures are executed in the containers. Before

the execution of any customized remote code, including any

remote services and/or data analytical jobs, a proper remote

execution container needs to be setup, with the following

components.

Managed Assemblies: Prajna automatically discovers the

managed assemblies that the remote function pointer and the

closure data structure depend upon. Moreover, it can auto-

matically traverse referenced assemblies needed by the re-

mote function for execution. Therefore, if the executed re-

mote closure are written in managed code, there is no need

for the programmer to specify the dependent assemblies, as

they will be automatically discovered.

Unmanaged DLLs, Libraries, Executables and data files:

If the remote function calls into unmanaged DLLs, libraries,

and executables, or uses data stored in data files, those files

(or its containing folder) need to be specified by the pro-

grammer in the remote execution roster.

Other dependencies: The programmer may specify addi-

tional dependencies that are sometimes needed in properly

setting up the remote execution container. They may in-

clude: credential of remote execution, environmental varia-

ble setting, customized data serialization and deserialization

delegate, and the working directory.

2.3 Prajna remote execution: file hash and versioning

Prajna computes a strong hash (SHA-256) for each of the

managed assemblies, unmanaged DLLs, libraries, executa-

bles and data files involved in the remote execution roster.

The list of hashes are sent first. Prajna daemon checks if the

corresponding assemblies, unmanaged code and data files al-

ready exist in the remote node through the strong hash and

looking into a common hashed directory. If the file exists,

there is no need to send the file content, Prajna daemon

simply links the file to its final location, and touches the orig-

inal file in the hash directory. The touch operation allows

Prajna to quickly track what files have been used in the re-

mote execution environment, and garbage collect long-time

unused files. If the corresponding file is not present in the

remote node, the content of the file will be sent by the client.

Upon receiving of the file content (be it assemblies, unman-

aged code or data files), the daemon first writes the file to

 Figure 1 Prajna daemon and remote execution contain-

ers. Each container has a loopback connection links back

to the daemon. If the daemon is killed, all associated con-

tainers will automatically terminate.

the common hash directory, and then links the file to its final

location in the remote execution container.

2.4 Launch of remote execution container

After the remote execution container has been setup, it

will be launched as a separate process in the remote node,

with proper credentials, working directory, and standard out-

put and standard error redirected and monitored. Prajna en-

courages programmers to use .Net System.Diagnos-

tics.Trace for most of the execution monitoring. However,

there are pre-existing components (e.g., unmanaged code)

that monitors execution via standard output and error, hence,

Prajna also logs and monitors those.

The container establishes a fast TCP loopback [7] con-

nection to daemon. Through this loopback connection,

Prajna daemon informs the container about any client that is

actively using the container to run data analytical jobs or

launch services. Other services and programs can discover

the container, and enumerate through the services and con-

tracts provided by the container. Whenever this connection

is severed, indicating that the daemon is closed by the user,

the container will also be shutdown. The container will also

be closed if there are no running services and no active cli-

ents that are using the container.

For a data analytical job that runs repeatedly (e.g., exe-

cuting data analytical jobs again and again, executing ma-

chine learning tasks repeatedly), it can reuse the container

that has already been setup. Prajna makes running remote

closures efficient, as 1) after the container is setup, each re-

mote closure only needs to send information of the function

pointer and the data needed for the execution, and 2) if the

same remote closure runs repeatedly (typical in data analyt-

ical loops or machine learning tasks), the second run of the

closure becomes a direct function call.

3. Prajna Service and Contract

3.1 Services

Launching a remote service in Prajna becomes the simple

remote closure execution of a delegate FUNC<RemoteIn-

stance> with a start parameter, where a class derived from

RemoteInstance manages the life cycle of the services.

Prajna service is a long running program that provides ser-

vices through either Prajna contracts (for other Prajna com-

patible programs, services and data analytical routines) or

other standard web interface (e.g., Restful Web API [8]). Re-

moteInstance exposes the interfaces shown in Table 1.

Programmers can easily convert an existing program to

an Prajna service. The programming efforts involved in-

clude: extending RemoteInstance, implementing the ab-

stract function for initialization, doing work, shutdown, and

service status, and specify the remote execution roster (see

Section 2.2). Prajna service model bears resemblance to pro-

gramming an Azure worker role [9]. Nevertheless, there are

a number of key improvements: 1) Prajna services are

launched with a start parameter, which allows the customi-

zation of services without the need to change the execution

roster. 2) Prajna can recognize unchanged assemblies, DLLs,

data files in the container, and avoid redeployment of those

files. 3) Prajna service can be launched at any remote node a

daemon is running, be it in a public cloud or a private server

cluster.

3.2 Contracts: export/import

Prajna exports delegates as contracts, which can be im-

ported by any Prajna compatible program, service and data

analytic programs. The list of supported delegate types are

shown in Table 2.

Table 2. Prajna contracts. (see [6] for notation)

Type Delegate

Action No input, no return

Action<T> Input T, no return

Func<TResult> No input, return TResult

Func<TResult> No input, return TResult

Func<T,TResult> Input T, return TResult

Func<Task<TResult>> No input, return Task<TResult>

Func<T,Task<TResult>> Input T, return Task<TResult>

Func<IEnumera-

ble<TResult>>

No input, return a data sequence

with each element as TResult

Func<T,IEnumera-

ble<TResult>>

Input T, return a data sequence

with each element as TResult

3.3 Contracts: behind the scene

Behind the scene, the implementation of Prajna contracts can

be illustrated in Figure 2. When an Prajna contract provider

(typically a running Prajna service) exports a contract, the

contract is first installed in a local key-value store, with the

contract name as the lookup key. Then, Prajna registers the

contract to one or more daemons so that the contract can be

discovered remotely. Furthermore, Prajna also installs a

wrapped callback API for the contract so that any remote in-

vocation of the contract by consumers calls back the delegate

exported. For example, for Func<T,TResult>, a remote

callback API is installed so that once the contract is called

upon, the callback API first parses the input parameter T

from the network stream, then calls the delegate

Table 1. Interface of RemoteInstance.

Interface functionality

OnStart(param) Called at initialization

Start() Called to do work, and expected to run

forever

OnStop() Called to gracefully shutdown

IsRunning() Check if the service is still running.

Func<T,TResult> that provides the service, and finally

sends return TResult back to caller.

Prajna contracts can be consumed by any program that

links to Prajna client library. At the time of import, Prajna

checks if the contract with the proper name exists in its local

store. If the contract is present, then the contract is checked

for type signature (both input and output parameter type). If

a matched contract is found, the delegate stored in the local

store is simply returned to the calling application.

If the contract is not discovered in the local store, Prajna

further attempts to discover the contract in the clusters (or

local daemon if cluster parameter is null). If the contract

with the proper name, input and output signatures are found,

network connection is established to the contract provider,

and Prajna installs a wrapped remote calling API to consume

the contract service, and store the wrapped calling API to the

local contract store so that the second import of the contract

doesn’t need to go through remote discovery again.

With this mechanism, consuming contracts among ser-

vices in the same container or between data analytical jobs

and services in the same container becomes a direct function

call. As the returned contract is simply the same delegate ex-

ported by the contract provider. As such, Prajna encourages

the componentization of services, as splitting a big services

into many small component services and use contracts to

consume each other leads to no overhead in final deploy-

ment.

Let us use an example to illustrate the wrapping API im-

plementation at the contract consumer and contract provider.

Say a contract of name Contract with calling signature

Func<T,Task<TResult>> is being imported. After discover-

ing the contract with remote destination Dest, a remote call-

ing API of delegate Func<T,Task<TResult>> will be in-

stalled at the local contract store. Whenever this delegate is

called with parameter T, the wrapping API generates a con-

tract request and calls Dest with: 1) contract name Con-

tract, 2) a 128-bit GUID [10] that uniquely identified the re-

quest, 3) input parameter T. The wrapping API also create a

TaskCompletionSource [11], and immediately returned the

enclosed Task object to the calling application. This way, the

thread of the calling application does not block, and can pro-

cess other works.

Receiving the contract request, the contract provider

routes the request to the proper callback API based on the

name Contract. The contract is then served, either synchro-

nously and/or asynchronously. After the delegate success-

fully completes, the callback API sends back the result

TResult together with the request GUID. When the returned

result reaches the wrapping API of the caller, the wrapping

API finds TaskCompletionSource of the request through the

request GUID. After TResult is deserialized, SetResult

method is called to inform the calling API that the result is

available. The wrapping API also periodically checks the

outstanding replies for timeouts (the timeout value can be

customized for each request). Method SetException is used

to inform the calling API that the remote delegate call fails.

3.4 Contracts: data serialization

For object T/TResult that is serializable, Prajna automati-

cally uses BinaryFormatter to convert the object to/from

byte stream. Nevertheless, if the programmer is not satisfied

with either the execution performance and/or the generated

byte stream size of BinaryFormatter, he/she can install cus-

tomized serializer and deserializer to convert between object

T/TResult and byte stream. Each customized serializer and

deserializer is uniquely identified by a GUID, and the pres-

ence of the particular GUID alerts Prajna that the following

byte stream needs to be deserialized by a certain customized

deserializer.

During remote execution, the list of serializer and dese-

rializer is sent as part of the remote execution roster to the

remote node. Thus, they are available before any remote pro-

gram execution.

3.5 Contracts for data analytics

Prajna service exports contracts of data analytical jobs in the

form of Func<IEnumerable<TResult>> or Func<T,IEnu-

merable<TResult>>. We have given special consideration

for those contracts so that data can be efficiently sent across

containers, and the analytical results can be aggregated from

multiple containers.

First, at the time of export, the programmer needs to set a

parameter of SerializationLimit, which dictates how

many items of TResult are packaged and sent together. The

parameter SerializationLimit has no effect if the contract

is being imported by a program in the same container, as that

is a direct delegate call. However, if the data is being re-

trieved across different containers, SerializationLimit

Figure 2 Prajna Contracts. The contract provider exports

the contract to a local store, registers the contract, and at-

tach proper callback API for remote execution. The con-

tract client (can be any Prajna program, other services or

data analytical routines) imports the contract by discover-

ing it from local store and daemon. Proper wrapped dele-

gate is installed for remote execution.

governs how many items of TResult will be packaged into

an array of TResult[] and sent in a single reply. The design

recognizes that individual TResult object can be small, and

there may be non-trivial processing overhead and serializa-

tion overhead involved. By aggregating multiple TResult

items and sent them together, the overhead can be largely

amortized. If the programmer desires to send each TResult

one by one, he/she can set the SerializationLimit to 1. If

the programmer desires to send all TResult to the calling

application in one reply, he can set the SerializationLimit

to a non-positive value (e.g., -1).

The customized serializer and deserializer, if used, need

to be bound to the data type of array TResult[]. Because the

serializer and deserializer is always working with an array of

object of the same type, special compression mechanisms

such as those used by SQL column store [12] or PowerDrill

[13] can be employed here.

When the callback API receives a data analytical request,

say of Func<T,IEnumerable<TResult>>, it calls the delegate

which returns IEnumerable<TResult>. The GetEnumerator

method is then called, which in most of the case starts the

actual data gathering process and retrieves the twin object

IEnumerator. The callback API alternatively calls method

MoveNext and Current, packages and sends items of

TResult[] to the calling application. When the IEnumerator

reaches the end (MoveNext returns false), the remaining

items (if any) are sent as TResult[]. Finally, a null object

is sent. Because any valid collection of TResult items is an

array of at least one, the null object uniquely signals the end

of the data sequence.

Prajna allows multiple data sources from different ser-

vices to be aggregated and analyzed by the same data ana-

lytical program. If there are multiple services exporting data

analytical contracts of same name and signature, at the time

of invocation, the calling API will issues a request to each

contract provider, and records the network interface that the

request is sent to. When a null object is received from a net-

work interface, Prajna make a note that the data sequence

from that network interface has completed. Only when all

network interfaces have returned the null object or timed

out, Prajna will finally mark the data sequence as completely

retrieved, and return false for MoveNext after all returned

results are iterated through.

Prajna uses lock-free data structure as much as possible

to enable the calling application and the network remote

functions to operate efficient yet independently without lock.

4. Prajna Data Analytics

4.1 Prajna: construction of DSet

Prajna runs data analytical jobs through a language-inte-

grated API similar to Spark [1]. Prajna exposes DSet, which

like Spark, is read-only, partitioned collection of records

across a cluster. However, unlike Spark, in which RDDs are

started by transformations of data in stable storage, DSets

are started by calling one or more delegate of Func<IEnu-

merable<U>> on each remote node, each delegate call forms

a partition on the particular remote container of DSet. DSet

spans a distributed dataset, in which each element U can be

considered a row in a large table. For most practical applica-

tions, the element U is a Tuple<T1,T2,…,TN> for which Tj can

be considered as jth column of the row. However, there is

no practical restriction of the data structure for the element

of U. DSet can span a distributed key-value set, in which

there is a key K and value V per row, and can be used for

transformations that relies upon a key, e.g., distributed sort,

MapReduce [20], sort join, hash join, etc..

This design enables Prajna to create distributed dataset

more diversely and in-memory than what is supported by

Spark. Prajna can start computation from 1) remote data set

stored in a distributed file storage system (e.g., HDFS [15],

Azure), 2) aggregation of local storage (may be non-redun-

dant depending on whether the local storage has been repli-

cated) on all remote nodes, and 3) aggregated real-time per-

formance/analytical information of the remote running ma-

chine. Prajna can also import in-memory data from one or

multiple services that runs in the same or different container

of the data analytical job to from DSet, as shown in Section

3.5.

4.2 DSet: partitions and collections.

In Prajna, each DSet consists of a set of partitions, each

partition is resultant from the running of a delegate on one

particular remote container. Each DSet has a partition map-

ping, which records mapping information between partition

A and remote node B.

For example, if the partition is resultant from iterating

through a non-replicated local storage, through performance

counters, and/or through importing contracts of Prajna ser-

vices running on the same remote machine, as discussed in

Section 3.5, the partition is uniquely mapped to the particular

remote node that the delegate runs. The failing of the remote

node renders that particular partition unavailable. On the

other hand, if the DSet is resultant from accessing a remote

distributed redundant store, such as HDFS/Azure, each par-

tition can be accessed by any remote node in the cluster. If

the DSet is resultant from Prajna natively implemented triple

replicated store, the partition is accessible on the three nodes

that the replicated stream is stored at.

Based on the particular partition mapping structure, DSet

may or may not be resilient. If DSet is formed from a reliable

distributed storage (e.g., triple replicated local store, HDFS

and/or Azure), the resultant DSet is resilient, because the

failing of some nodes in the cluster will not affect the reliable

retrieval of the data. However, if DSet is spanned in other

mechanism, e.g., via delegate on non-replicated local stor-

age, on performance counters, on contracts of Prajna ser-

vices running on the same remote machine, the resultant

DSet is not resilient, as failing of nodes will render the asso-

ciated local storage, performance counters, and/or Prajna

services information on those node inaccessible. For this rea-

son, we call the dataset on Prajna as DSet (Distributed data

Sets). The behavior of inaccessible data of the failing node

is fine and in most cases desirable, as the machine statuses

of the failing node need not be analyzed in most of the cases.

A DSet partition is further split into collections, each col-

lection holds an array of items of U[], with the size of the

collection governed by parameter SerializationLimit.

Like we have explained in Section 3.5, the collection con-

cept allows multiple small items to be aggregated into an ar-

ray, thus amortizes processing overhead (e.g., type cast,

check for cancellation, etc.) and improves serialization over-

head. The parameter SerializationLimit can have a sig-

nificant impact on performance, as too small value may lead

the high overhead as each data item is processed through dif-

ferent stages, and a too big value may lead to poor CPU

cache (L1/L2/L3) hit rate as the collection cannot fit in the

cache.

4.3 DSet: per collection transformations.

Prajna can further create DSet from other DSet. These

operations are called transformations. The transformed DSet

are not materialized immediately. Instead, they are lazily

evaluated in the cluster. Prajna records information on how

the transformed DSet are constructed through other DSet,

and the content of DSet are only materialized during execu-

tion, and are immediately released if it is not further used.

Prajna triggers execution of data analytics through actions,

such as ToSeq() and fold. Due to space limitation, we will

only examine a selected list of Prajna transformations and

actions through the rest of the section, and comment on the

characteristics and implementation of some of them. Please

refer to Prajna API document for more complete information

of Prajna transformations and actions offered.

4.4 DSet: per collection transformations.

A selected set of Prajna per-collection transformations is

shown in Table 3. These transformations share common be-

haviors in that the transformed DSet have the same partition

and collection structure as the source DSet.

We design the signature of the per-collection transfor-

mations to be similar to the corresponding modules in F#

Collections.Seq module. Thus, Map creates a new DSet

whose elements are the result of applying a given function

to each of the element of the prior DSet. Filter returns a

new DSet containing only the elements for which the predi-

cate delegate returns true. Choose applies the given function

to each element, and returns a DSet for each element where

the function returns Some (of F# Options) with value. Col-

lect applies the delegate to each element, and concatenates

result to a new DSet.

Prajna supports both F# style asynchronous workflow

through AsyncMap and .Net style Task Parallel Library

(TPL) via ParallelMap. In either of the cases, a threadpool

will be used parallel execute work items asynchronously.

Table 3. Prajna per-collection transformations

Type Delegate F# notation

Map Func<U,V> UV

AsyncMap Func<U,async<V>> Uasync<V>

ParallelMap Func<U,Task<V>> UTask<V>

Filter Func<U,bool> Ubool

MapByCollec-

tion

Func<U[],V[]> U[]V[]

Choose Func<U,V option> UV option

Collect Func<U,IEnumera-

ble<V>>

Useq<V>

4.5 DSet: in-node transformations

A selected set of in-node transformations is shown in Table.

4. The transformations in this category change the collection

structure of the input DSet, but do not alter the partition

structure. RowsReorg restructure the collection with a new

SerializationLimit parameter. In particular, RowsSplit

splits the collection to contain a single item (i.e., U[] with an

array size of 1). RowsMergeAll merges all collections of the

partition into a single partition, which can be used for per-

partition operation such as the operation required for the Re-

duce step in MapReduce [20] or distributed sort. Split ap-

plies delegate to data item U, and split a DSet into multiple

DSet, each of which can be considered as a column in the

original dataset. Merge reverses the operation of split, and

merge multiple DSet into a single DSet with a per-row merg-

ing delegate. Prajna also supports a number of sorted join

(also called merge-join) operation, including inner sort join,

left outer sort join and right outer sort join [21]. In all the

sort join operation, we assume that two operand DSets have

already been distributedly sorted, across and within parti-

tions, via the same partition delegate and key function.

Table 4. Prajna per-collection transformations

Type Function

RowsReorg Change collection size

RowsSplit Split collection to single element

RowsMergeAll Merge elements in partition to a

single collection

Split Split a DSet to multiple

MixBy Merge split DSet

InnerSortedJoin Inner sorted join

RightOuterSortedJoin Right outer sorted join

LeftOuterSortedJoin Left outer sorted join

4.6 DSet: cache transformations

A selected set of Prajna cache transformations is shown in

Table. 5. The CacheInRAM transformation hints that the cre-

ated DSet should be kept in memory after it has been com-

puted, while CacheInRAMDictionary also creates an addi-

tional ConcurrentDictionary data structure to hold data.

The later becomes useful to speed up the sort join operation,

if the joined DSet can be completely cached in memory.

Table 5. Prajna cache transformations

Type Function

CacheInRAM Cache DSet for repeated data an-

alytical operation

CacheInRAMDiction-

ary

Cache DSet for repeated data an-

alytical operation, in particular

fast hash join operation

4.7 DSet: cross-node transformations

A selected set of Prajna cross node transformations is shown

in Table. 6. These transformations generate DSet with differ-

ent partition structure, often sends data across nodes in the

cluster. Using a delegate, Repartition redistributes each

data element to a new partition. MapReduce implements

well-known MapReduce transformations in [20]. Sort im-

plements a distributed bin sort, in which a partition delegate

determine which partition the key should be placed, and then

sorted DSet within the partition using a comparer delegate.

HashJoin combines two DSets based on a key with equality

delegate. CrossJoin returns the Cartesian product of rows

from the two DSets.

Table 6. Prajna cross-node transformations

Type Function

Repartition Repartition a DSet

MapReduce MapReduce (see [20])

Sort Distributed Sort

HashJoin Hash Join

CrossJoin Cross join

4.8 DSet: Actions

All above DSet operations are lazy transformations, where

the resultant DSets are generated on demand. That means

that the programmer should not attempt to time any of the

above transformations, as the resultant time only show the

time to construct the execution graph in Prajna. Only actions

evaluate and manifest DSet, and a selected set of Prajna ac-

tions is shown in Table. 7. The action SaveAndMonitor

evaluates DSet, write to a distributed file system, and moni-

tor the progress of the operation. Internally, SaveAndMoni-

tor first splits the DSet, and directs one DSet to a ToSeq

action to be monitored, and directs the other DSet to a Save

transformation to be written to a distributed file system.

Prajna performs save operation this way to make it possible

to write to multiple DSets in a single action. This can enable

a database columnar store like save operation, where a large

table of DSet is split into many DSet of a single column, each

of which is stored in a separate stream, enable more efficient

compression [12][13] of columnar byte stream. Also, sub-

sequent operation can selectively load columns of DSet, us-

ing MixBy transformation to generate a new DSet a chosen

set of columns. ToSeq operation manifest DSet into an IE-

numerable<U>. ToSeq operation itself is a transformation, as

the DSet hasn’t been evaluated in that point (so don’t time

that operation). However, subsequent action on IEnumera-

ble<U>, in particular the GetEnumerator method will trigger

the evaluation of DSet. Fold and Iter are two distributed

aggregation actions on DSet. Fold evaluates DSet, applies

an accumulator function that accumulate the result per parti-

tion, and then applies an aggregation function to aggregate

results across all partitions. During execution, each Prajna

node will first execute accumulator function per partition,

and then aggregate all results within that node. The final re-

sult is send back to the calling node, which aggregates result

across nodes. Iter applies a delegate to first transform the

element to an aggregable data structure, the result is then ag-

gregated within and across partitions. Internally, Iter is im-

plemented via Fold.

Table 7. Prajna actions

Type Function

SaveAndMon-

itor

Write to a distributed file system, and mon-

itor the progress of the operation

ToSeq Manifest the result as an IEnumerable<U>

Fold Apply a accumulator functional per parti-

tion, then further aggregate the results of all

partitions

Iter Apply a delegate to each element, and ag-

gregate the result within and across parti-

tions

4.9 DSet: behind the scene

In implementation, all DSets transformations only setup an

execution graph in the calling application. There is no net-

work call to other node, and none of the DSet involved are

being evaluated. The only operations that trigger a distrib-

uted Prajna data analytical computation are the actions. (for

ToSeq, that is the GetEnumerator method call).

When the calling application encounters a Prajna action,

an execution graph is materialized, with all DSets involved

in the computation. The delegate within each of the transfor-

mation and action is also captured as a closure, with function

pointer plus the additional data structure required for remote

execution. They are serialized together with the execution

graph. The execution graph is sent to each of the remote con-

tainer that will execute the data analytical program. Upon

receiving the execution graph, the remote container instanti-

ate DSet, to reconstruct the execution graph in each of the

container of the remote node. The one exception is for any

DSet that are involved in cache transformations. Prajna re-

mote container will attempt to look for the cached DSet ob-

ject in the remote container, and if found, reuse the cached

DSet (and its data) for the following computation.

 During execution, the DSet that is being read (by

ToSeq/SaveAndMonitor) or being accumulated by (Fold/

Iter) spins up M repeatable work items, each of which is

cued to one of N threads for possible execution. The param-

eter N can be controlled by NumParallelExecution parame-

ter. For each work item, a collection worth of items is read

or accumulated upon, and if the DSet is a transformation, the

upstream DSet is called, with the read/accumulation opera-

tion wrapped as a continuation operation. If the upstream

DSet is still a transformation, the transformation operation

itself is wrapped as a continuation (with the read/accumula-

tion operation further wrapped). Please note that wrapping

as continuation does not produce additional stack, especially

as F# optimizes tail recursive calls. When the operation

reaches the final source DSet that is reading from distributed

file, or importing data from contracts from other Prajna ser-

vices, the continuation operations are unwrapped and exe-

cuted upon. This style of program execution is similar to

what has been implemented in in F# Collections.Seq mod-

ule. For Prajna per-collection transformations as shown in

Table. 3, a collection worth of data is read/imported, oper-

ated and passed by each transformation, and finally read (by

ToSeq/SaveAndMonitor) or being accumulated by

(Fold/Iter). The entire DSet, and/or even the entire parti-

tion of DSet is never instantiated in the memory. This pro-

gramming model enables Prajna to process with huge dis-

tributed data set efficiently.

4.10 DSet: distributed failure recovery

A programming semantics that Prajna shares with that of

Spark is that DSet is immutable in the data analytical opera-

tion. Thus, when a node fails during the computation, only

the failed partitions of DSet needs to be identified and

recomputed, without the need to roll back the entire compu-

tation.

Refer to Section 4.2, depending on how the delegate runs

to create the DSet, the source DSet has different behavior in

its capability to deal with failed partition. If the partition is

uniquely mapped to a particular remote node, such as result-

ant from iterating through non-replicated local storage,

through performance counters, and/or through contracts of

Prajna services running on the same remote machine, the

failure of the remote node will leads to that particular parti-

tion to be removed from the computation. If the partition is

created from accessing a remote distributed redundant store,

such as HDFS/Azure, the partition can be recreated by any

remote node other than the failed node in the cluster. If the

partition is accessed through the triple replicated local store,

the failed partition can be accessed from the other node that

is not failing. After the partition of the failed node have been

remapped, Prajna re-compute the failed partition using a

mechanism similar to RDDs in Spark[1].

5. Prajna: Debuggability, Performance, and Code

Rewrite

Working on a large distributed system such as Prajna brings

a number of challenges in system implementation. We

choose to discuss three issues in this section. They are: 1)

system debuggability, 2) performance related to task paral-

lelism, and 3) the need to rewriting a significant portion of

code.

5.1 Debuggability

First and foremost, we have found that the debuggability

becomes a core competency in the system development.

When dealing with a super complicated distributed system

such as Prajna, bugs became unavoidable and may bury deep

in the system. We have placed catch strategically in code so

that we can localize exception. Moreover, we have found the

following two tricks to be particularly helpful.

5.1.1 Delegate as trace Func<string>

We have placed trace log liberally throughout the code to

monitor the operation flow and execution path of code. How-

ever, we want to make sure that those trace operation do not

slow down the code execution if we are sufficiently confi-

dent that the particular code segment is not the one that

causes problem. For that purpose, we program each trace op-

eration as a delegate guarded by a certain trace level, as:

Trace (level, Func<string>) (.Net notation)

Trace level ()string (F# notation)

In either of the forms, if the guarded level is above the

current trace level (a global static variable), the delegate

which evaluate the trace output will not be executed. And the

operation overhead is simply a comparison again a global

static variable (an in-cache comparison operation). There-

fore, we can simply lower global trace level, or raise the trace

level of a particular code groups to turn on/off traces in code

dynamically, while incur minimal overhead when the trace

is not outputted (as most of the heavy computation is in eval-

uating trace output).

5.1.2 Dynamically attach IDE for debug

We build Prajna deployment environment in such a way

that the PDB of Prajna daemon and container are also de-

ployed to the remote node. When issue is found, the pro-

grammer may attach a debug IDE (Integrated development

environment, e.g., Visual Studio) to monitor the inner oper-

ation of Prajna daemon and container. By source-linking the

PDB with the code checked-in on Github, the IDE can auto-

matically download the right version of the source code and

provide full debugging functionality. We have found that

this approach significantly improves distributed debugging

environment, as we have the full functionality of IDE (in-

cluding setting breakpoint, watch, etc.) at our disposal.

5.2 Performance related to task parallelism

Prajna is built as a high performance distributed system.

The core engine of Prajna uses lock-free data structure in

System.Collections.Concurrent space, and adopt a task

parallel execution strategy. In the beginning, we have at-

tempted to use F# async workflow or task parallel library

(TPL) to implement the Prajna execution engine. However,

we have observed severe performance issue in the imple-

mentation. In some execution, we observe async DNS re-

solve takes 70 seconds to complete, which causes a ripple

effect in the system performance.

We localize the issue to the architecture of async work-

flow and task parallel library. Both are designed and require

all work items to be implemented asynchronously. However,

in actual implementation, this may be difficult to accom-

plish. For example, there are asynchronous write, read, and

flush method related to FileStream, however, there is no

native asynchronous method to create a directory, change

file attribute, etc.. When some (even small number) of block-

ing operations are mixed with asynchronous workflow, it

could lead to a significant performance degradation of the

entire system, as threads are taken out of execution pool by

the blocked task or work item. This performance issue is par-

ticularly annoying as the performance hit happen sporadi-

cally. For example, say among a set of tasks scheduled, a

small set of task A blocks, and another set of task B can un-

block those task A. In many execution cases, at least some of

the tasks B are executed before A, and the performance deg-

radation is not so bad. However, in one particular run, the

task scheduler may happen to schedule all task set A before

task set B, and suddenly, a severe performance degradation

is observed. .Net is supposed to observe the performance

degradation and launch additional thread to compensate, but

we observe that in many common scenarios, .Net doesn’t

launch thread fast enough.

After pinpointing the issue, we have re-implemented the

execution engine with a customized threadpool with work

items that is described in Section 4.9. The work item is like

Task, but we have used two additional mechanism to diag-

nostic blocking and performance degradation issue. First, we

require each work item to provide a delegate that provides

debugging information (in the form of Func<string> or

()string). When Prajna observes that the work item has

been executing a long time in the execution engine, the de-

bugging information will be printed in trace to identify such

work items with performance issue (and potential blocking

information). Second, we provide mechanism to let pro-

grammer to signal that the code is executing potential block-

ing code via EnterBlock and LeaveBlock pair, or is waiting

for a WaitHandle to fire via SafeWaitOne call. Internally,

Prajna monitors if the blocking code is run among one of the

customized thread pools, and if a large number of threads are

blocked. If both is true, additional threads will be launched

to compensate for the blocked work items, and reassume the

execution.

5.3 F#, distributed system development and code rewrite

At this stage, the code base of Prajna consists of 50,000

line of code (LOC), including significant comments and

trace and debugging code. The core development team is two

people. Prajna is developed based on .Net 4.0 and F#, but

there are no other code dependency.

The extreme compact code base speaks volume of com-

pactness nature of F# code. Especially, we find that being

strong typed with type-inference capability allows the devel-

oper to focus energy on the core logic of the code. We have

need to rewrite the core execution engine of Prajna a couple

of time (e.g., a significant rewrite is to use the customized

threadpool as execution engine.) With F#’s help on the

strong typed and type-inference, we can complete the rewrite

of the core execution engine without touch the rest of the

code base. During many of the small rewrite (in term of the

code regions touched), we observe that once the code com-

piled through, it just works and passes the dozen of unit tests

we have designed (including distributed write, read, failure

recovery test, MapReduce, distributed sort, sorted join, hash

join, cross join, etc..)

6. Experimental Results

In this section, we show how Prajna is used to build cloud

service. We also show how to add interactive data monitor-

ing capability on the Prajna services running in the cloud.

 Figure 3 VM Hub Front End Deployment location.

6.1 VM Hub, a cloud based visual recognition hub

We worked with our colleagues to develop Visual Media

Hub (VM Hub), which is a generic visual recognition hub

deployed in cloud. VM Hub consists a front end service and

a back end service. The front end service receives recogni-

tion requests of image/video frames through a Restful

WebAPI [26]. The front end service also includes a Web in-

terface for human operator to monitor the health of Front end

operations. It then sends the image/video frame to one of the

back end for recognition. The back end service runs an ob-

ject recognition instance, and export an image/video object

recognition contract to a set of front ends.

Writing and deploying services using Prajna is easy. Pro-

grammer simply wrote the service using his/her favorite plat-

form/tools, and then wraps it up with Prajna. The wrapping

includes spelling out all elements of the Remote Execution

Container, and then write a delegate and start parameter that

launches the remote services (see Section. 2). For the front

end, as the services is completely in managed code, Prajna

automatically traverses and discovers all assemblies re-

quired for the service. The programmer does need to spell

out a data directory needed in the launch of front end service.

We further use a traffic manager to load balance across the

cluster of front end, and direct user recognition request to the

closest front end node.

The back end recognition service is designed by our col-

leagues. It has capability to recognize 11 categories of image

objects: dog breed, Orlando/Austin/Seattle/Beijing /Sichuan

landmarks (one category for each landmark), Disney attrac-

tions, bottled drinks, photo tagging, flowers, and office prod-

ucts. The recognize is mostly unmanaged C++ code, and in-

clude components such as Caffe recognition engine [27],

Cuda [28], Open CV library [29] and LevelDB [30]. More-

over, each recognition category includes a model directory.

All together, the remote execution containers of the recogni-

tion service includes 40 files in addition to the assemblies.

They include 7 files in the model directory (in particular the

Caffe recognition model is usually around 200MB, and takes

bulk of the size of the remote execution container), 21 DLLs,

3 exes. For proper execution, the code also expects a partic-

ular directory structure at remote for the model file. Also, if

the standard output and standard error of the remote con-

tainer is not properly hooked up, the code will not run.

We write a thin wrapper (~400 line of code) to hook this

recognition service to a VM Hub back end recognition ser-

vice. Once wrapped, the back end recognition service home

in to the cluster of VM Hub front end server to provide image

recognition service. The Caffe recognizer is a single instance

recognition engine (e.g., the recognizer only process one im-

age at a time). Prajna though may launch multiple instances

on a single machine, so that each back end server can serve

multiple image recognition request. We do observe that the

inner code of Caffe recognizer contains parallelized CPU ex-

ecution that use all cores on the target machine, and use Cuda

if GPU is available. Thus, when multiple recognition in-

stances are running (each in its own remote execution con-

tainer), every recognition instance slows down significantly.

We have launched a set of VM Hub front ends running in

each of the deployed location of a major public cloud pro-

vider (blue dots in Figure. 3). We have then run 80 back end

instances, where 60 instances are on an old cluster and 20

instances are on a new cluster, see Table. 8. Any one of the

front end server or back end server can fail independently at

any moment. The Prajna supported VM Hub will be able to

provide continuous image/video recognition service as long

as at least one of the front end server and back end server is

live. With this experiment, we show that Prajna is capable of

deploying complicated service writing by others (includes

both managed and unmanaged code), and handle remote de-

ployment of service in both public cloud and private cluster.

Table 8. VM Hub: Front End / Back End configuration

Type Specification

Front End VM, 2 cores, 3.5GB

Back End 1 Operon® 2352, 2100 Mhz, 4 Cores, 8GB

RAM

Back End 2 Dual Proc Xeon® E5-2450L, 8 cores per

processor, 192GB RAM

6.2 Real-time interactive data analytics

The back end and front end services export contract of

information to be analyzed. The list of contracts exported by

the front end services and back end services are shown in

Table. 9.

Table 9. VM Hub: Exported contracts

Exported by Contract

Front end Network RTT (to back end)

Front end Expected service latency by back end

Front end Back end service queue (capacity, cur-

rent load, # of request from this front end)

Front end User request (including image/video

recognition request and all user activities

on the Front End web)

Front end Request statistics (time received, recog-

nition category, web activity tag, recog-

nition performance break down [assign-

ment, network, queue, processing])

Back end Network RTT (to front end)

Back end Recognition category

Back end Request statistics (front end servers that

send in the request, recognition category,

service status, recognition performance

breakdown [queue, processing])

A typical block of codes that perform the data analytics

on the front end or back end services are as follows. We use

the calculation of aggregation recognition statistics, e.g.,

99.9-percentile recognition latency as examples. In the front

end / back end service, we have code:

exportSeqFunction (“perf”, getStatistics)

Internally, the front end / back end service uses a lock-free

ConcurrentQueue to hold a recent statistics of 10 minutes

worth of recognition queries. The object recognition thread

can continuously add query to the statistics store, dequeue

those statistics that are more than 10 minutes old. The

method getStatistics simply casts the internal query statistics

store to IEnumerable<_>. When the data analytic program is

running, it will call back and gets the IEnumerable<_> object

of the statistics store, and enumerate through the statistics.

Because the statistics store is lock-free, none of the thread

needs to get an exclusive lock to access the query statistic

store (either adding statistics, removing timeout statistics, or

enumerating through statistic stores).

The data analytical program has codes:

let a = DSet<_>.import cl null “perf”

let b = a.RowsReorg -1

let c = b.MapByCollection queryPerformance

let d = c.Fold perfAgg perfAgg null

The first line of code imports the contract from the front end

and/or backend service. The first parameter is the back

end/front end cluster that the analytics will be performed

upon. The second parameter indicates that we are importing

contracts from the daemon, which automatically imports all

contracts of services that linked to the daemon (i.e., all in-

stances of the front end / back end that runs on that machine.)

The third parameter is the name of the contract. At this mo-

ment, we have created a DSet that span across the entire front

end or back end clusters, with one partition on each of the

node. The second and third line of code aggregate all data in

a partition to a single collection, and then computes an ag-

gregated query performance. Because we are calculating ag-

gregation statistics that needs to sort through the collection

of recognition query to obtain medium, 90-percentile and

99.9-percentile performance, we first aggregate all query

statistics to a single collection, and then maps this collection

to one single aggregated statistics. The forth line of code first

accumulates the statistics in each partition (which does noth-

ing as there is only one aggregated statistics), and then ag-

gregates the statistics across back end / front end nodes. All

computation until accumulating the statistics in each parti-

tion is done locally in the back end / front end nodes where

the query statistics is located. Only at that moment, the ag-

gregated statistics per node is serialized and sent through the

network to be aggregated by the monitoring node. Prajna is

capable of providing low latency, high performance data an-

alytics because it performs most of the big data computation

in memory (this even includes the collection of the source

data to be analyzed). The data never touches the disk during

the entire cycle of computation.

7. Related Works

In this aspect, Prajna is similar to many other remoting pro-

tocol (e.g., Java’s RMI/JRMP, .Net remoting, Windows

Communication Foundation). Nevertheless, by using dele-

gate, Prajna contract has three key features that differentiate

it from other remoting protocol.

The programming model of Prajna is heavily influenced

by Spark [1]. The core engines of Prajna and Spark are both

written in a functional programming language (Scale in

Spark, and F# in Prajna). Some of the programming concept

of Prajna, e.g., executing remote code via closure, DSet be-

ing immutable, lazy instantiation of transformed distributed

data set, failure recovery by only re-computing the failed

partition, is influenced by Spark.

However, Prajna goes steps further in leveraging func-

tional concept in distributed system building. It realizes that

the native remote execution mode of closure execution can

be not only used in data analytics, but also can be used in

launching applications and staging remote services. It further

expands the native remote execution to include not only

managed code, but also unmanaged code (with DLLs) and

data files. It allows DSet to be created by running customi-

zable code on remote machine, and by importing from con-

tracts in other machines. Though the data analytical program

of Prajna still uses immutable DSet in its programming flow,

mutable data set (such as an in-memory key-value store) can

be hosted in one of the Prajna services, thus significantly ex-

pand the programming modality that can be supported by

Prajna.

While Spark significantly speeds up the building of dis-

tributed data analytical program, Prajna has the potential to

speed up the building of distributed data analytical programs

and distributed services, and combine both services and data

analytical program under a single umbrella. For example,

there are other high-level distributed programming inter-

faces that are available, e.g., distributed Actor framework in

Orleans [23], geo-distributed database in Spanner [24] and

distributed machine learning [25]. Each offers interesting

cluster capability, but each is usually implemented in a dif-

ferent programming paradigm and implementation frame-

work. With Prajna’s core providing a flexible native remote

execution model, a remote closure execution and contract

provider-consumer interface, and a cluster data analytical

feature, it becomes possible to quickly build those distrib-

uted Actor, geo-distributed database, and distributed ma-

chine learning capability under Prajna. It may significantly

reduce the engineering time needed to build a distributed ser-

vice.

8. Summary

In this paper, we describe Prajna, a distributed functional

programming platform that can be used to quickly develop

both services (deployable in public and in private cloud) and

interactive data analytical capability of the running services.

Extensively using functional programming concept, Prajna

significantly improve the programmability, the debuggabil-

ity and the performance of distributed system building.

Prajna adopts a native remote execution model for running

remote closures (functional pointer plus additional data

structure). The assemblies, DLLs, and data files needed for

remote execution is sent to launch a remote container, and

only updated whenever one of the file content changes (ver-

ified by a strong hash). Prajna launches services through a

delegate with parameter, and allows service to export a vari-

ety of contracts that can be consumed by other programs,

services and/or Prajna data analytical programs. Prajna can

execute big data query across a wide cluster interactively

across a large cluster.

[1]. Zaharia, Matei, et al. "Spark: cluster computing with working sets."

Proceedings of the 2nd USENIX conference on Hot topics in cloud
computing. 2010.

[2]. Gonzalez, Joseph E., et al. "Graphx: Graph processing in a distributed
dataflow framework." Proceedings of the 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI). 2014.

[3]. Talwalkar, A., et al. "Mlbase: A distributed machine learning wrap-
per." NIPS Big Learning Workshop. 2012.

[4]. Agarwal, Sameer, et al. "BlinkDB: queries with bounded errors and
bounded response times on very large data." Proceedings of the 8th
ACM European Conference on Computer Systems. ACM, 2013.

[5]. Xin, Reynold, et al. "GraySort on Apache Spark by Databricks.",
http://sortbenchmark.org/ApacheSpark2014.pdf.

[6]. Petricek, Tomas, and Jon Skeet. Real World Functional Program-
ming: With Examples in F# and C#. Manning Publications Co., 2009.

[7]. Ed Briggs. "Fast TCP Loopback Performance and Low Latency with
Windows Server 2012 TCP Loopback Fast Path.", http://blogs.tech-
net.com/b/wincat/archive/2012/12/05/fast-tcp-loopback-perfor-
mance-and-low-latency-with-windows-server-2012-tcp-loopback-
fast-path.aspx

[8]. Richardson, Leonard, and Sam Ruby. RESTful web services. "
O'Reilly Media, Inc.", 2008.

[9]. Brunetti, Roberto. Windows Azure step by step. Microsoft Press, 2011.

[10]. http://en.wikipedia.org/wiki/Globally_unique_identifier

[11]. Blewett, Richard, and Andrew Clymer. "Everything a Task." Pro
Asynchronous Programming with. NET. Apress, 2013. 149-160.

[12]. Larson, Per-Åke, et al. "SQL server column store indexes." Proceed-
ings of the 2011 ACM SIGMOD International Conference on Man-
agement of data. ACM, 2011.

[13]. Hall, Alexander, et al. "Processing a trillion cells per mouse click."
Proceedings of the VLDB Endowment 5.11 (2012): 1436-1446.

[14]. Danny Shih, Parallel programming with .Net,
http://blogs.msdn.com/b/pfxteam/archive/2010/01/26/9953725.aspx

[15]. Borthakur, Dhruba. "HDFS architecture guide." Hadoop Apache Pro-
ject (2008): 53.

[16]. Calder, Brad, et al. "Windows Azure Storage: a highly available cloud
storage service with strong consistency." Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles. ACM,
2011.

[17]. Syme, Don, et al. "The F# 3.0 Language Specification." (2005).

[18]. Petricek, Tomas, and Don Syme. "Syntax Matters: Writing abstract
computations in F#." Pre-proceedings of TFP (Trends in Functional
Programming), St. Andrews, Scotland (2012).

[19]. Leijen, Daan, Wolfram Schulte, and Sebastian Burckhardt. "The de-
sign of a task parallel library." Acm Sigplan Notices. Vol. 44. No. 10.
ACM, 2009

[20]. Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simplified data
processing on large clusters." Communications of the ACM 51.1
(2008): 107-113.

[21]. http://en.wikipedia.org/wiki/Join_(SQL)

[22]. https://msdn.microsoft.com/en-us/library/system.tu-
ple(v=vs.110).aspx

[23]. Bernstein, P., et al. Orleans: Distributed Virtual Actors for Program-
mability and Scalability. MSR Technical Report (MSR-TR-2014-41,
24).

[24]. Corbett, James C., et al. "Spanner: Google’s globally distributed data-
base." ACM Transactions on Computer Systems (TOCS) 31.3 (2013):
8.

[25]. Dean, Jeffrey, et al. "Large scale distributed deep networks." Ad-
vances in Neural Information Processing Systems. 2012.

[26]. Richardson, Leonard, and Sam Ruby. RESTful web services. "O'Reilly
Media, Inc.", 2008.

[27]. Jia, Yangqing, et al. "Caffe: Convolutional architecture for fast feature
embedding." Proceedings of the ACM International Conference on
Multimedia. ACM, 2014.

[28]. Nvidia, C. U. D. A. "Programming guide." (2008).

[29]. Bradski, Gary, and Adrian Kaehler. Learning OpenCV: Computer vi-
sion with the OpenCV library. " O'Reilly Media, Inc.", 2008.

[30]. http://en.wikipedia.org/wiki/LevelDB

[31]. https://github.com/MSRCCS/Prajna

http://sortbenchmark.org/ApacheSpark2014.pdf
http://blogs.technet.com/b/wincat/archive/2012/12/05/fast-tcp-loopback-performance-and-low-latency-with-windows-server-2012-tcp-loopback-fast-path.aspx
http://blogs.technet.com/b/wincat/archive/2012/12/05/fast-tcp-loopback-performance-and-low-latency-with-windows-server-2012-tcp-loopback-fast-path.aspx
http://blogs.technet.com/b/wincat/archive/2012/12/05/fast-tcp-loopback-performance-and-low-latency-with-windows-server-2012-tcp-loopback-fast-path.aspx
http://blogs.technet.com/b/wincat/archive/2012/12/05/fast-tcp-loopback-performance-and-low-latency-with-windows-server-2012-tcp-loopback-fast-path.aspx
http://en.wikipedia.org/wiki/Globally_unique_identifier
http://blogs.msdn.com/b/pfxteam/archive/2010/01/26/9953725.aspx
http://en.wikipedia.org/wiki/Join_(SQL)
https://msdn.microsoft.com/en-us/library/system.tuple(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.tuple(v=vs.110).aspx
http://en.wikipedia.org/wiki/LevelDB

